Cyber-Physical Systems

The summary for the Cyber-Physical Systems grant is detailed below. This summary states who is eligible for the grant, how much grant money will be awarded, current and past deadlines, Catalog of Federal Domestic Assistance (CFDA) numbers, and a sampling of similar government grants. Verify the accuracy of the data FederalGrants.com provides by visiting the webpage noted in the Link to Full Announcement section or by contacting the appropriate person listed as the Grant Announcement Contact. If any section is incomplete, please visit the website for the National Science Foundation, which is the U.S. government agency offering this grant.
Cyber-Physical Systems: Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will far exceed the simple embedded systems of today. CPS technology will transform the way people interact with engineered systems -- just as the Internet has transformed the way people interact with information. New smart CPS will drive innovation and competition in sectors such as agriculture, energy, transportation, building design and automation, healthcare, and manufacturing.


The December 2010 report of the President's Council of Advisors on Science and Technology (PCAST) titled <a href="http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-nitrd-report-2010.pdf" target="_blank">Designing a Digital Future: Federally Funded Research and Development in Networking and Information Technology</a>calls for continued investment in CPS research because of its scientific and technological importance as well as its potential impact on grand challenges in a number of sectors critical to U.S. security and competitiveness such as the ones noted above. These challenges and technology gaps are further described in a<a href="http://www.nitrd.gov/nitrdgroups/images/6/6a/Cyber_Physical_Systems_%28CPS%29_Vision_Statement.pdf" target="_blank">CPS Vision Statement</a>published in 2012 by the federal Networking and Information Technology Research and Development (NITRD) CPS Senior Steering Group.


Tremendous progress has been made in advancing CPS technology over the last five-plus years. We have explored foundational technologies that have spanned an ever-growing set of application domains, enabling breakthrough achievements in many of these fields. At the same time, the demand for innovation in these domains continues to grow, and is driving the need to accelerate fundamental research to keep pace.


Despite significant inroads into CPS technology in recent years, we do not yet have a mature science to support systems engineering of high-confidence CPS, and the consequences are profound. Traditional analysis tools are unable to cope with the full complexity of CPS or adequately predict system behavior. For example, minor events that trip the current electric power grid -- an ad hoc system -- can escalate with surprising speed into widespread power failures. This scenario exemplifies the lack of appropriate science and technology to conceptualize and design for the deep interdependencies among engineered systems and the natural world. The challenges and opportunities for CPS are thus significant and far-reaching. New relationships between the cyber and physical components require new architectural models that redefine form and function. They integrate the continuous and discrete, compounded by the uncertainty of open environments. Traditional real-time performance guarantees are insufficient for CPS when systems are large and spatially, temporally, or hierarchically distributed in configurations that may rapidly change. With the greater autonomy and cooperation possible with CPS, greater assurances of safety, security, scalability, and reliability are demanded, placing a high premium on open interfaces, modularity, interoperability, and verification.


The goal of the CPS program is to develop the core system science needed to engineer complex cyber-physical systems which people can use or interact with and depend upon. Some of these may require high-confidence or provable behaviors. The program aims to foster a research community committed to advancing research and education in CPS and to transitioning CPS science and technology into engineering practice. By abstracting from the particulars of specific systems and application domains, the CPS program seeks to reveal cross-cutting fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application sectors. To expedite and accelerate the realization of cyber-physical systems in a wide range of applications, the CPS program also supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and testbeds. We have also seen a convergence of CPS technologies and research thrusts that underpin "Smart Cities" and the Internet of Things (IoT). These domains offer new and exciting challenges for foundational research and provide opportunities for maturation at multiple time horizons.


In 2015, NSF is working closely with multiple agencies of the federal government, including the U.S. Department of Homeland (DHS) Security Science and Technology Directorate (S&amp;T), U.S. Department of Transportation (DOT) Federal Highway Administration (FHWA), U.S. DOT Intelligent Transportation Systems (ITS) Joint Program Office (JPO), National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD), and several National Institutes of Health (NIH) institutes and centers [including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Office of Behavioral and Social Sciences Research (OBSSR), National Cancer Institute (NCI), and National Center for Advancing Translational Sciences (NCATS)], to identify basic research needs in CPS common across multiple application domains, along with opportunities for accelerated transition to practice.


Three classes of research and education projects -- differing in scope and goals -- will be considered through this solicitation:

<ul>
<li>Breakthrough projects must offer a significant advance in fundamental CPS science, engineering and/or technology that has the potential to change the field. This category focuses on new approaches to bridge computing, communication, and control. Funding for Breakthrough projects may be requested for a total of up to $500,000 for a period of up to 3 years.</li>
<li>Synergy projects must demonstrate innovation at the intersection of multiple disciplines, to accomplish a clear goal that requires an integrated perspective spanning the disciplines. Funding for Synergy projects may be requested for a total of $500,001 to $1,000,000 for a period of 3 to 4 years.</li>
<li>Frontierprojects must address clearly identified critical CPS challenges that cannot be achieved by a set of smaller projects. Funding may be requested for a total of $1,000,001 to $7,000,000 for a period of 4 to 5 years.</li>
</ul>
Federal Grant Title: Cyber-Physical Systems
Federal Agency Name: National Science Foundation
Grant Categories: Science and Technology
Type of Opportunity: Discretionary
Funding Opportunity Number: 15-541
Type of Funding: Grant
CFDA Numbers: 20.200, 43.001, 47.041, 47.070, 93.286, 93.350, 93.396, 97.065
CFDA Descriptions: Highway Research and Development Program; Science; Engineering Grants; Computer and Information Science and Engineering; Discovery and Applied Research for Technological Innovations to Improve Human Health; National Center for Advancing Translational Sciences; Cancer Biology Research; Homeland Security Advanced Research Projects Agency
Current Application Deadline: May 4, 2015
Original Application Deadline: May 4, 2015
Posted Date: Feb 2, 2015
Creation Date: Feb 2, 2015
Archive Date: Jun 3, 2015
Total Program Funding: $34,000,000
Maximum Federal Grant Award: $7,000,000
Minimum Federal Grant Award: $300,000
Expected Number of Awards: 32
Cost Sharing or Matching: No
Applicants Eligible for this Grant
Others (see text field entitled "Additional Information on Eligibility" for clarification)
Additional Information on Eligibility
*Who May Submit Proposals: Proposals may only be submitted by the following:
-Non-profit, non-academic organizations: Independent museums, observatories, research labs, professional societies and similar organizations in the U.S. associated with educational or research activities.
-Universities and Colleges - Universities and two- and four-year colleges (including community colleges) accredited in, and having a campus located in, the US acting on behalf of their faculty members. Such organizations also are referred to as academic in
Link to Full Grant Announcement
NSF Publication 15-541
Grant Announcement Contact
NSF grants.gov support [email protected]
If you have any problems linking to this funding announcement, please contact

National Science Foundation 703-292-4261
Similar Government Grants
FY23-FY24 Advanced Transportation Technology and Innovation (ATTAIN) Program
Saving Lives with Connectivity: Accelerating Vehicle to Everything (V2X) Deployment
2023-2026 Accelerated Innovation Deployment (AID) Demonstration
Fiscal Year (FY) 2022-2026 Advanced Digital Construction Management Systems (ADCMS)
Advancing Sustainability And Resilience In Pavements
Low Cost Carbon Fiber Production Technology
National Safe Routes to School Clearinghouse
National Bicycle and Pedestrian Clearinghouse
More Grants from the National Science Foundation
Focus on Recruiting Emerging Climate and Adaptation Scientists and Transformers
NSF Ocean Observatories Initiative Facility Board (OOIFB) Administrative Support Office
Global Centers
Confronting Hazards, Impacts and Risks for a Resilient Planet
Computer Science for All

FederalGrants.com is not endorsed by, or affiliated with, any government agency. Copyright ©2007-2024 FederalGrants.com